go-chart/matrix/matrix.go
Will Charczuk 88499d5576 updates
2017-04-17 10:27:24 -07:00

319 lines
6.3 KiB
Go

package matrix
import (
"bytes"
"errors"
"fmt"
"math"
)
const (
// DefaultEpsilon represents the minimum precision for matrix math operations.
DefaultEpsilon = 0.000001
)
var (
// ErrDimensionMismatch is a typical error.
ErrDimensionMismatch = errors.New("matrix is not square, cannot invert")
)
// New returns a new matrix.
func New(rows, cols int) *Matrix {
return &Matrix{
rows: rows,
cols: cols,
epsilon: DefaultEpsilon,
elements: make([]float64, rows*cols),
}
}
// Identity returns the identity matrix of a given order.
func Identity(order int) *Matrix {
m := New(order, order)
for i := 0; i < order; i++ {
m.Set(i, i, 1)
}
return m
}
// Zeros returns a matrix of a given size zeroed.
func Zeros(rows, cols int) *Matrix {
return New(rows, cols)
}
// Ones returns an matrix of ones.
func Ones(rows, cols int) *Matrix {
ones := make([]float64, rows*cols)
for i := 0; i < (rows * cols); i++ {
ones[i] = 1
}
return &Matrix{
rows: rows,
cols: cols,
epsilon: DefaultEpsilon,
elements: ones,
}
}
// NewFromArrays creates a matrix from a jagged array set.
func NewFromArrays(a [][]float64) *Matrix {
rows := len(a)
if rows == 0 {
return nil
}
cols := len(a[0])
m := New(rows, cols)
for row := 0; row < rows; row++ {
for col := 0; col < cols; col++ {
m.Set(row, col, a[row][col])
}
}
return m
}
// Vector is just an array of values.
type Vector []float64
// Matrix represents a 2d dense array of floats.
type Matrix struct {
epsilon float64
elements []float64
rows, cols int
}
// Arrays returns the matrix as a two dimensional jagged array.
func (m *Matrix) Arrays() [][]float64 {
a := make([][]float64, m.rows, m.cols)
for row := 0; row < m.rows; row++ {
for col := 0; col < m.cols; col++ {
a[row][col] = m.Get(row, col)
}
}
return a
}
// Size returns the dimensions of the matrix.
func (m *Matrix) Size() (rows, cols int) {
rows = m.rows
cols = m.cols
return
}
// IsSquare returns if the row count is equal to the column count.
func (m *Matrix) IsSquare() bool {
return m.rows == m.cols
}
// IsSymmetric returns if the matrix is symmetric about its diagonal.
func (m *Matrix) IsSymmetric() bool {
if m.rows != m.cols {
return false
}
for i := 0; i < m.rows; i++ {
for j := 0; j < i; j++ {
if m.Get(i, j) != m.Get(j, i) {
return false
}
}
}
return true
}
// Get returns the element at the given row, col.
func (m *Matrix) Get(row, col int) float64 {
index := (m.cols * row) + col
return m.elements[index]
}
// Set sets a value.
func (m *Matrix) Set(row, col int, val float64) {
index := (m.cols * row) + col
m.elements[index] = val
}
// Col returns a column of the matrix as a vector.
func (m *Matrix) Col(col int) Vector {
values := make([]float64, m.rows)
for row := 0; row < m.rows; row++ {
values[col] = m.Get(row, col)
}
return Vector(values)
}
// Row returns a row of the matrix as a vector.
func (m *Matrix) Row(row int) Vector {
values := make([]float64, m.cols)
for col := 0; col < m.cols; col++ {
values[col] = m.Get(row, col)
}
return Vector(values)
}
// Copy returns a duplicate of a given matrix.
func (m *Matrix) Copy() *Matrix {
m2 := New(m.rows, m.cols)
for row := 0; row < m.rows; row++ {
for col := 0; col < m.cols; col++ {
m2.Set(row, col, m.Get(row, col))
}
}
return m2
}
// DiagonalVector returns a vector from the diagonal of a matrix.
func (m *Matrix) DiagonalVector() Vector {
rank := minInt(m.rows, m.cols)
values := make([]float64, rank)
for index := 0; index < rank; index++ {
values[index] = m.Get(index, index)
}
return Vector(values)
}
// Equals returns if a matrix equals another matrix.
func (m *Matrix) Equals(other *Matrix) bool {
if other == nil && m != nil {
return false
} else if other == nil {
return true
}
if otherRows, otherCols := other.Size(); otherRows != m.rows || otherCols != m.cols {
return false
}
for row := 0; row < m.rows; row++ {
for col := 0; col < m.cols; col++ {
if m.Get(row, col) != other.Get(row, col) {
return false
}
}
}
return true
}
// L returns the matrix with zeros below the diagonal.
func (m *Matrix) L() *Matrix {
m2 := New(m.rows, m.cols)
for row := 0; row < m.rows; row++ {
for col := row; col < m.cols; col++ {
m2.Set(row, col, m.Get(row, col))
}
}
return m2
}
// U returns the matrix with zeros above the diagonal.
func (m *Matrix) U() *Matrix {
m2 := New(m.rows, m.cols)
for row := 0; row < m.rows; row++ {
for col := 0; col < row && col < m.cols; col++ {
m2.Set(row, col, m.Get(row, col))
}
}
return m2
}
// Diagonal returns a matrix from the diagonal of a matrix.
func (m *Matrix) Diagonal() *Matrix {
rank := minInt(m.rows, m.cols)
m2 := New(rank, rank)
for index := 0; index < rank; index++ {
m2.Set(index, index, m.Get(index, index))
}
return m2
}
// String returns a string representation of the matrix.
func (m *Matrix) String() string {
buffer := bytes.NewBuffer(nil)
for row := 0; row < m.rows; row++ {
for col := 0; col < m.cols; col++ {
buffer.WriteString(fmt.Sprintf("%f", m.Get(row, col)))
buffer.WriteRune(' ')
}
buffer.WriteRune('\n')
}
return buffer.String()
}
// Decompositions
// LU returns the LU decomposition of a matrix.
func (m *Matrix) LU() (l, u, p *Matrix) {
return
}
// QR performs the qr decomposition.
func (m *Matrix) QR() (q, r *Matrix) {
rows, cols := m.Size()
qr := m.Copy()
q = New(rows, cols)
r = New(rows, cols)
var i, j, k int
var norm, s float64
for k = 0; k < cols; k++ {
norm = 0
for i = k; i < rows; i++ {
norm = math.Hypot(norm, qr.Get(i, k))
}
if norm != 0 {
if qr.Get(k, k) < 0 {
norm = -norm
}
for i = k; i < rows; i++ {
qr.Set(i, k, qr.Get(i, k)/norm)
}
qr.Set(k, k, qr.Get(k, k)+1.0)
for j = k + 1; j < cols; j++ {
s = 0
for i = k; i < rows; i++ {
s += qr.Get(i, k) * qr.Get(i, j)
}
s = -s / qr.Get(k, k)
for i = k; i < rows; i++ {
qr.Set(i, j, qr.Get(i, j)+s*qr.Get(i, k))
if i < j {
r.Set(i, j, qr.Get(i, j))
}
}
}
}
r.Set(k, k, -norm)
}
//Q Matrix:
i, j, k = 0, 0, 0
for k = cols - 1; k >= 0; k-- {
q.Set(k, k, 1.0)
for j = k; j < cols; j++ {
if qr.Get(k, k) != 0 {
s = 0
for i = k; i < rows; i++ {
s += qr.Get(i, k) * q.Get(i, j)
}
s = -s / qr.Get(k, k)
for i = k; i < rows; i++ {
q.Set(i, j, q.Get(i, j)+s*qr.Get(i, k))
}
}
}
}
return
}