255 lines
5.5 KiB
Go
255 lines
5.5 KiB
Go
package chart
|
|
|
|
import (
|
|
"constraints"
|
|
"math"
|
|
)
|
|
|
|
const (
|
|
_pi = math.Pi
|
|
_2pi = 2 * math.Pi
|
|
_3pi4 = (3 * math.Pi) / 4.0
|
|
_4pi3 = (4 * math.Pi) / 3.0
|
|
_3pi2 = (3 * math.Pi) / 2.0
|
|
_5pi4 = (5 * math.Pi) / 4.0
|
|
_7pi4 = (7 * math.Pi) / 4.0
|
|
_pi2 = math.Pi / 2.0
|
|
_pi4 = math.Pi / 4.0
|
|
_d2r = (math.Pi / 180.0)
|
|
_r2d = (180.0 / math.Pi)
|
|
)
|
|
|
|
// MinMax returns the minimum and maximum of a given set of values.
|
|
func MinMax[A constraints.Ordered](values ...A) (min, max A) {
|
|
if len(values) == 0 {
|
|
return
|
|
}
|
|
|
|
max = values[0]
|
|
min = values[0]
|
|
var value A
|
|
for index := 1; index < len(values); index++ {
|
|
value = values[index]
|
|
if value < min {
|
|
min = value
|
|
}
|
|
if value > max {
|
|
max = value
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// MinInt returns the minimum int.
|
|
func Min[A constraints.Ordered](values ...A) (min A) {
|
|
if len(values) == 0 {
|
|
return
|
|
}
|
|
|
|
min = values[0]
|
|
var value A
|
|
for index := 1; index < len(values); index++ {
|
|
value = values[index]
|
|
if value < min {
|
|
min = value
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// MaxInt returns the maximum int.
|
|
func Max[A constraints.Ordered](values ...A) (max A) {
|
|
if len(values) == 0 {
|
|
return
|
|
}
|
|
|
|
max = values[0]
|
|
var value A
|
|
for index := 1; index < len(values); index++ {
|
|
value = values[index]
|
|
if value > max {
|
|
max = value
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Number is a type that is a number.
|
|
type Number interface {
|
|
~int | ~uint | ~float64
|
|
}
|
|
|
|
// AbsInt returns the absolute value of an int.
|
|
func Abs[A Number](value A) A {
|
|
var zero A
|
|
if value < zero {
|
|
return -value
|
|
}
|
|
return value
|
|
}
|
|
|
|
// DegreesToRadians returns degrees as radians.
|
|
func DegreesToRadians(degrees float64) float64 {
|
|
return degrees * _d2r
|
|
}
|
|
|
|
// RadiansToDegrees translates a radian value to a degree value.
|
|
func RadiansToDegrees(value float64) float64 {
|
|
return math.Mod(value, _2pi) * _r2d
|
|
}
|
|
|
|
// PercentToRadians converts a normalized value (0,1) to radians.
|
|
func PercentToRadians(pct float64) float64 {
|
|
return DegreesToRadians(360.0 * pct)
|
|
}
|
|
|
|
// RadianAdd adds a delta to a base in radians.
|
|
func RadianAdd(base, delta float64) float64 {
|
|
value := base + delta
|
|
if value > _2pi {
|
|
return math.Mod(value, _2pi)
|
|
} else if value < 0 {
|
|
return math.Mod(_2pi+value, _2pi)
|
|
}
|
|
return value
|
|
}
|
|
|
|
// DegreesAdd adds a delta to a base in radians.
|
|
func DegreesAdd(baseDegrees, deltaDegrees float64) float64 {
|
|
value := baseDegrees + deltaDegrees
|
|
if value > _2pi {
|
|
return math.Mod(value, 360.0)
|
|
} else if value < 0 {
|
|
return math.Mod(360.0+value, 360.0)
|
|
}
|
|
return value
|
|
}
|
|
|
|
// DegreesToCompass returns the degree value in compass / clock orientation.
|
|
func DegreesToCompass(deg float64) float64 {
|
|
return DegreesAdd(deg, -90.0)
|
|
}
|
|
|
|
// CirclePoint returns the absolute position of a circle diameter point given
|
|
// by the radius and the theta.
|
|
func CirclePoint(cx, cy int, radius, thetaRadians float64) (x, y int) {
|
|
x = cx + int(radius*math.Sin(thetaRadians))
|
|
y = cy - int(radius*math.Cos(thetaRadians))
|
|
return
|
|
}
|
|
|
|
// RotateCoordinate rotates a coordinate around a given center by a theta in radians.
|
|
func RotateCoordinate(cx, cy, x, y int, thetaRadians float64) (rx, ry int) {
|
|
tempX, tempY := float64(x-cx), float64(y-cy)
|
|
rotatedX := tempX*math.Cos(thetaRadians) - tempY*math.Sin(thetaRadians)
|
|
rotatedY := tempX*math.Sin(thetaRadians) + tempY*math.Cos(thetaRadians)
|
|
rx = int(rotatedX) + cx
|
|
ry = int(rotatedY) + cy
|
|
return
|
|
}
|
|
|
|
// RoundUp rounds up to a given roundTo value.
|
|
func RoundUp(value, roundTo float64) float64 {
|
|
if roundTo < 0.000000000000001 {
|
|
return value
|
|
}
|
|
d1 := math.Ceil(value / roundTo)
|
|
return d1 * roundTo
|
|
}
|
|
|
|
// RoundDown rounds down to a given roundTo value.
|
|
func RoundDown(value, roundTo float64) float64 {
|
|
if roundTo < 0.000000000000001 {
|
|
return value
|
|
}
|
|
d1 := math.Floor(value / roundTo)
|
|
return d1 * roundTo
|
|
}
|
|
|
|
// Normalize returns a set of numbers on the interval [0,1] for a given set of inputs.
|
|
// An example: 4,3,2,1 => 0.4, 0.3, 0.2, 0.1
|
|
// Caveat; the total may be < 1.0; there are going to be issues with irrational numbers etc.
|
|
func Normalize(values ...float64) []float64 {
|
|
var total float64
|
|
for _, v := range values {
|
|
total += v
|
|
}
|
|
output := make([]float64, len(values))
|
|
for x, v := range values {
|
|
output[x] = RoundDown(v/total, 0.0001)
|
|
}
|
|
return output
|
|
}
|
|
|
|
// Mean returns the mean of a set of values
|
|
func Mean[A Number](values ...A) A {
|
|
return Sum(values...) / A(len(values))
|
|
}
|
|
|
|
// Sum sums a set of values.
|
|
func Sum[A Number](values ...A) (total A) {
|
|
for _, v := range values {
|
|
total += v
|
|
}
|
|
return total
|
|
}
|
|
|
|
// SumInt sums a set of values.
|
|
func SumInt(values ...int) int {
|
|
var total int
|
|
for _, v := range values {
|
|
total += v
|
|
}
|
|
return total
|
|
}
|
|
|
|
// PercentDifference computes the percentage difference between two values.
|
|
// The formula is (v2-v1)/v1.
|
|
func PercentDifference(v1, v2 float64) float64 {
|
|
if v1 == 0 {
|
|
return 0
|
|
}
|
|
return (v2 - v1) / v1
|
|
}
|
|
|
|
// GetRoundToForDelta returns a `roundTo` value for a given delta.
|
|
func GetRoundToForDelta(delta float64) float64 {
|
|
startingDeltaBound := math.Pow(10.0, 10.0)
|
|
for cursor := startingDeltaBound; cursor > 0; cursor /= 10.0 {
|
|
if delta > cursor {
|
|
return cursor / 10.0
|
|
}
|
|
}
|
|
|
|
return 0.0
|
|
}
|
|
|
|
// RoundPlaces rounds an input to a given places.
|
|
func RoundPlaces(input float64, places int) (rounded float64) {
|
|
if math.IsNaN(input) {
|
|
return 0.0
|
|
}
|
|
|
|
sign := 1.0
|
|
if input < 0 {
|
|
sign = -1
|
|
input *= -1
|
|
}
|
|
|
|
precision := math.Pow(10, float64(places))
|
|
digit := input * precision
|
|
_, decimal := math.Modf(digit)
|
|
|
|
if decimal >= 0.5 {
|
|
rounded = math.Ceil(digit)
|
|
} else {
|
|
rounded = math.Floor(digit)
|
|
}
|
|
|
|
return rounded / precision * sign
|
|
}
|
|
|
|
func f64i(value float64) int {
|
|
r := RoundPlaces(value, 0)
|
|
return int(r)
|
|
}
|