Adds the ability to draw an XY scatter plot. (#27)

* works more or less

* updating comment

* removing debugging printf

* adding output

* tweaks

* missed a couple series validations

* testing auto coloring

* updated output.png

* color tests etc.

* sanity check tests.

* should not use unkeyed fields anyway.
This commit is contained in:
Will Charczuk 2017-03-05 16:54:40 -08:00 committed by GitHub
parent 17b28beae8
commit b713ff85cc
22 changed files with 511 additions and 72 deletions

View file

@ -1,8 +1,6 @@
package drawing
import (
"math"
)
import "math"
const (
// CurveRecursionLimit represents the maximum recursion that is really necessary to subsivide a curve into straight lines
@ -98,31 +96,60 @@ func SubdivideQuad(c, c1, c2 []float64) {
return
}
func traceWindowIndices(i int) (startAt, endAt int) {
startAt = i * 6
endAt = startAt + 6
return
}
func traceCalcDeltas(c []float64) (dx, dy, d float64) {
dx = c[4] - c[0]
dy = c[5] - c[1]
d = math.Abs(((c[2]-c[4])*dy - (c[3]-c[5])*dx))
return
}
func traceIsFlat(dx, dy, d, threshold float64) bool {
return (d * d) < threshold*(dx*dx+dy*dy)
}
func traceGetWindow(curves []float64, i int) []float64 {
startAt, endAt := traceWindowIndices(i)
return curves[startAt:endAt]
}
// TraceQuad generate lines subdividing the curve using a Liner
// flattening_threshold helps determines the flattening expectation of the curve
func TraceQuad(t Liner, quad []float64, flatteningThreshold float64) {
const curveLen = CurveRecursionLimit * 6
const curveEndIndex = curveLen - 1
const lastIteration = CurveRecursionLimit - 1
// Allocates curves stack
var curves [CurveRecursionLimit * 6]float64
curves := make([]float64, curveLen)
// copy 6 elements from the quad path to the stack
copy(curves[0:6], quad[0:6])
i := 0
// current curve
var i int
var c []float64
var dx, dy, d float64
for i >= 0 {
c = curves[i*6:]
dx = c[4] - c[0]
dy = c[5] - c[1]
c = traceGetWindow(curves, i)
dx, dy, d = traceCalcDeltas(c)
d = math.Abs(((c[2]-c[4])*dy - (c[3]-c[5])*dx))
// bail early if the distance is 0
if d == 0 {
return
}
// if it's flat then trace a line
if (d*d) < flatteningThreshold*(dx*dx+dy*dy) || i == len(curves)-1 {
if traceIsFlat(dx, dy, d, flatteningThreshold) || i == lastIteration {
t.LineTo(c[4], c[5])
i--
} else {
// second half of bezier go lower onto the stack
SubdivideQuad(c, curves[(i+1)*6:], curves[i*6:])
SubdivideQuad(c, traceGetWindow(curves, i+1), traceGetWindow(curves, i))
i++
}
}