This commit is contained in:
Will Charczuk 2016-07-27 12:34:15 -07:00
parent 4f381fa4dc
commit 6533e951e7
8 changed files with 309 additions and 16 deletions

View file

@ -0,0 +1,42 @@
package main
import (
"net/http"
"github.com/wcharczuk/go-chart"
)
func drawChart(res http.ResponseWriter, req *http.Request) {
/*
In this example we add a new type of series, a `SimpleMovingAverageSeries` that takes another series as a required argument.
InnerSeries only needs to implement `ValueProvider`, so really you could chain `SimpleMovingAverageSeries` together if you wanted.
*/
mainSeries := chart.ContinuousSeries{
Name: "A test series",
XValues: chart.Seq(1.0, 100.0), //generates a []float64 from 1.0 to 100.0 in 1.0 step increments, or 100 elements.
YValues: chart.SeqRand(100, 100), //generates a []float64 randomly from 0 to 100 with 100 elements.
}
// note we create a LinearRegressionSeries series by assignin the inner series.
// we need to use a reference because `.Render()` needs to modify state within the series.
linRegSeries := &chart.LinearRegressionSeries{
InnerSeries: mainSeries,
} // we can optionally set the `WindowSize` property which alters how the moving average is calculated.
graph := chart.Chart{
Series: []chart.Series{
mainSeries,
linRegSeries,
},
}
res.Header().Set("Content-Type", "image/png")
graph.Render(chart.PNG, res)
}
func main() {
http.HandleFunc("/", drawChart)
http.ListenAndServe(":8080", nil)
}

135
linear_regression_series.go Normal file
View file

@ -0,0 +1,135 @@
package chart
// LinearRegressionSeries is a series that plots the n-nearest neighbors
// linear regression for the values.
type LinearRegressionSeries struct {
Name string
Style Style
YAxis YAxisType
Window int
Offset int
InnerSeries ValueProvider
m float64
b float64
avgx float64
stddevx float64
}
// GetName returns the name of the time series.
func (lrs LinearRegressionSeries) GetName() string {
return lrs.Name
}
// GetStyle returns the line style.
func (lrs LinearRegressionSeries) GetStyle() Style {
return lrs.Style
}
// GetYAxis returns which YAxis the series draws on.
func (lrs LinearRegressionSeries) GetYAxis() YAxisType {
return lrs.YAxis
}
// Len returns the number of elements in the series.
func (lrs LinearRegressionSeries) Len() int {
return lrs.InnerSeries.Len()
}
// GetWindow returns the window size.
func (lrs LinearRegressionSeries) GetWindow() int {
if lrs.Window == 0 {
return lrs.InnerSeries.Len()
}
return lrs.Window
}
// GetEffectiveWindowEnd returns the effective window end.
func (lrs LinearRegressionSeries) GetEffectiveWindowEnd() int {
offset := lrs.GetOffset()
windowEnd := offset + lrs.GetWindow()
return MinInt(windowEnd, lrs.Len()-1)
}
// GetOffset returns the data offset.
func (lrs LinearRegressionSeries) GetOffset() int {
if lrs.Offset == 0 {
return 0
}
return lrs.Offset
}
// GetValue gets a value at a given index.
func (lrs *LinearRegressionSeries) GetValue(index int) (x, y float64) {
if lrs.InnerSeries == nil {
return
}
if lrs.m == 0 && lrs.b == 0 {
lrs.computeCoefficients()
}
offset := lrs.GetOffset()
x, y = lrs.InnerSeries.GetValue(index + offset)
y = (lrs.m * lrs.normalize(x)) + lrs.b
return
}
// GetLastValue computes the last moving average value but walking back window size samples,
// and recomputing the last moving average chunk.
func (lrs *LinearRegressionSeries) GetLastValue() (x, y float64) {
if lrs.InnerSeries == nil {
return
}
if lrs.m == 0 && lrs.b == 0 {
lrs.computeCoefficients()
}
endIndex := lrs.GetEffectiveWindowEnd()
x, y = lrs.InnerSeries.GetValue(endIndex)
y = (lrs.m * lrs.normalize(x)) + lrs.b
return
}
func (lrs *LinearRegressionSeries) normalize(xvalue float64) float64 {
return (xvalue - lrs.avgx) / lrs.stddevx
}
// computeCoefficients computes the `m` and `b` terms in the linear formula given by `y = mx+b`.
func (lrs *LinearRegressionSeries) computeCoefficients() {
startIndex := lrs.GetOffset()
endIndex := lrs.GetEffectiveWindowEnd()
valueCount := endIndex - startIndex
p := float64(endIndex - startIndex)
xvalues := NewRingBufferWithCapacity(valueCount)
for index := startIndex; index < endIndex; index++ {
x, _ := lrs.InnerSeries.GetValue(index)
xvalues.Enqueue(x)
}
lrs.avgx = xvalues.Average()
lrs.stddevx = xvalues.StdDev()
var sumx, sumy, sumxx, sumxy float64
for index := startIndex; index < endIndex; index++ {
x, y := lrs.InnerSeries.GetValue(index)
x = lrs.normalize(x)
sumx += x
sumy += y
sumxx += x * x
sumxy += x * y
}
lrs.m = (p*sumxy - sumx*sumy) / (p*sumxx - sumx*sumx)
lrs.b = (sumy / p) - (lrs.m * sumx / p)
}
// Render renders the series.
func (lrs *LinearRegressionSeries) Render(r Renderer, canvasBox Box, xrange, yrange Range, defaults Style) {
style := lrs.Style.InheritFrom(defaults)
DrawLineSeries(r, canvasBox, xrange, yrange, style, lrs)
}

View file

@ -0,0 +1,75 @@
package chart
import (
"testing"
assert "github.com/blendlabs/go-assert"
)
func TestLinearRegressionSeries(t *testing.T) {
assert := assert.New(t)
mainSeries := ContinuousSeries{
Name: "A test series",
XValues: Seq(1.0, 100.0),
YValues: Seq(1.0, 100.0),
}
linRegSeries := &LinearRegressionSeries{
InnerSeries: mainSeries,
}
lrx0, lry0 := linRegSeries.GetValue(0)
assert.InDelta(1.0, lrx0, 0.0000001)
assert.InDelta(1.0, lry0, 0.0000001)
lrxn, lryn := linRegSeries.GetLastValue()
assert.InDelta(100.0, lrxn, 0.0000001)
assert.InDelta(100.0, lryn, 0.0000001)
}
func TestLinearRegressionSeriesDesc(t *testing.T) {
assert := assert.New(t)
mainSeries := ContinuousSeries{
Name: "A test series",
XValues: Seq(100.0, 1.0),
YValues: Seq(100.0, 1.0),
}
linRegSeries := &LinearRegressionSeries{
InnerSeries: mainSeries,
}
lrx0, lry0 := linRegSeries.GetValue(0)
assert.InDelta(100.0, lrx0, 0.0000001)
assert.InDelta(100.0, lry0, 0.0000001)
lrxn, lryn := linRegSeries.GetLastValue()
assert.InDelta(1.0, lrxn, 0.0000001)
assert.InDelta(1.0, lryn, 0.0000001)
}
func TestLinearRegressionSeriesWindowAndOffset(t *testing.T) {
assert := assert.New(t)
mainSeries := ContinuousSeries{
Name: "A test series",
XValues: Seq(100.0, 1.0),
YValues: Seq(100.0, 1.0),
}
linRegSeries := &LinearRegressionSeries{
InnerSeries: mainSeries,
Offset: 10,
Window: 10,
}
lrx0, lry0 := linRegSeries.GetValue(0)
assert.InDelta(90.0, lrx0, 0.0000001)
assert.InDelta(90.0, lry0, 0.0000001)
lrxn, lryn := linRegSeries.GetLastValue()
assert.InDelta(80.0, lrxn, 0.0000001)
assert.InDelta(80.0, lryn, 0.0000001)
}

View file

@ -55,7 +55,7 @@ func TestMarketHoursRangeGetTicks(t *testing.T) {
ticks := r.GetTicks(TimeValueFormatter)
assert.NotEmpty(ticks)
assert.Len(ticks, 5)
assert.Len(ticks, 6)
assert.NotEqual(TimeToFloat64(r.Min), ticks[0].Value)
assert.NotEmpty(ticks[0].Label)
}

View file

@ -2,6 +2,7 @@ package chart
import (
"fmt"
"math"
"strings"
)
@ -200,6 +201,40 @@ func (rb *RingBuffer) String() string {
return strings.Join(values, " <= ")
}
// Average returns the float average of the values in the buffer.
func (rb *RingBuffer) Average() float64 {
var accum float64
rb.Each(func(v interface{}) {
if typed, isTyped := v.(float64); isTyped {
accum += typed
}
})
return accum / float64(rb.Len())
}
// Variance computes the variance of the buffer.
func (rb *RingBuffer) Variance() float64 {
if rb.Len() == 0 {
return 0
}
var variance float64
m := rb.Average()
rb.Each(func(v interface{}) {
if n, isTyped := v.(float64); isTyped {
variance += (float64(n) - m) * (float64(n) - m)
}
})
return variance / float64(rb.Len())
}
// StdDev returns the standard deviation.
func (rb *RingBuffer) StdDev() float64 {
return math.Pow(rb.Variance(), 0.5)
}
func arrayClear(source []interface{}, index, length int) {
for x := 0; x < length; x++ {
absoluteIndex := x + index

View file

@ -35,6 +35,17 @@ func (sma SMASeries) Len() int {
return sma.InnerSeries.Len()
}
// GetPeriod returns the window size.
func (sma SMASeries) GetPeriod(defaults ...int) int {
if sma.Period == 0 {
if len(defaults) > 0 {
return defaults[0]
}
return DefaultSimpleMovingAveragePeriod
}
return sma.Period
}
// GetValue gets a value at a given index.
func (sma SMASeries) GetValue(index int) (x, y float64) {
if sma.InnerSeries == nil {
@ -59,17 +70,6 @@ func (sma SMASeries) GetLastValue() (x, y float64) {
return
}
// GetPeriod returns the window size.
func (sma SMASeries) GetPeriod(defaults ...int) int {
if sma.Period == 0 {
if len(defaults) > 0 {
return defaults[0]
}
return DefaultSimpleMovingAveragePeriod
}
return sma.Period
}
func (sma SMASeries) getAverage(index int) float64 {
period := sma.GetPeriod()
floor := MaxInt(0, index-period)

View file

@ -28,8 +28,11 @@ func (xa XAxis) GetStyle() Style {
return xa.Style
}
// GetTicks returns the ticks for a series. It coalesces between user provided ticks and
// generated ticks.
// GetTicks returns the ticks for a series.
// The coalesce priority is:
// - User Supplied Ticks (i.e. Ticks array on the axis itself).
// - Range ticks (i.e. if the range provides ticks).
// - Generating continuous ticks based on minimum spacing and canvas width.
func (xa XAxis) GetTicks(r Renderer, ra Range, defaults Style, vf ValueFormatter) []Tick {
if len(xa.Ticks) > 0 {
return xa.Ticks

View file

@ -35,8 +35,11 @@ func (ya YAxis) GetStyle() Style {
return ya.Style
}
// GetTicks returns the ticks for a series. It coalesces between user provided ticks and
// generated ticks.
// GetTicks returns the ticks for a series.
// The coalesce priority is:
// - User Supplied Ticks (i.e. Ticks array on the axis itself).
// - Range ticks (i.e. if the range provides ticks).
// - Generating continuous ticks based on minimum spacing and canvas width.
func (ya YAxis) GetTicks(r Renderer, ra Range, defaults Style, vf ValueFormatter) []Tick {
if len(ya.Ticks) > 0 {
return ya.Ticks